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Abstract
With the development of society, data noise and other factors will cause the incompleteness
of information systems. Objects may increase or decrease over time in information systems.
The classical information system can be extended to the incomplete interval-valued deci-
sion information system (IIDIS) that is the researching object of this paper. Incremental
learning technique is a significant method for solving approximate sets under dynamic data.
This article defines a multi-threshold tolerance relation based on the set pair analysis theory
and establishes a rough set model in IIDIS. Then, several methods and algorithms for stat-
ically/dynamically solving approximate sets are shown. Finally, comparative experiments
from six UCI data sets show both dynamic algorithms take less time than the static algorithm
to calculate the approximate sets no matter how object set changes.

Keywords Dynamic data · Multi-threshold tolerance relation · Approximation set ·
Incomplete interval-valued decision information system

1 Introduction

The advancement of computer networks provides human with a mass of information every
day, including serviceable information and redundant information. The amount of infor-
mation grows, so does the demand for information analysis tools. People expect to gain
knowledge straightway from the data without any prior knowledge. Rough set theory (RST)
[1–3] is such a mathematical tool raised by Pawlak [1]. Its primal archetype was derived from
a relatively plain informationmodel. Particularly in the past 30years, the rough set theory has
been largely applied in areas of science and engineering, for example, data mining and data
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analysis, approximate reasoning, decision support and machine learning algorithms, and so
on [4–6]. Primary thought of RST is to achieve knowledge discovery by means of the classi-
fication of equivalence relations and to form concepts and regulations via the classification in
an approximate space. What an equivalence class calculated from the equivalence relation is
called concept is a set of indiscernible objects. Each uncertainty concept can be represented
by a couple of accurate notions that are upper approximation and lower approximation.

An information system (IS) can be seen as a form for collecting knowledge and informa-
tion. Rows represent the object set and columns show the attribute set (feature set). Usually
the datawe collect from real life are discrete, single-valued, or feature-valued (using language
to describe attributes of objects). In many practical problems, the attribute values of informa-
tion system are often continuous or only fall in an interval due to the complexity of practical
problems, which extend the attribute values of the information system from real numbers
to interval numbers. When the upper bound of interval number is equal to the lower bound,
interval-valued information system degenerates into a classical information system. In the
following, some scholars regard the interval-valued information system as their researching
background of discussion. Both Dai et al. [7–9] and Zhang et al. [10] studied the metrics of
information systems and provided some tools to promote the measurement of rough sets. Sun
designed a dominance relation in intervals and proposed theorems for solving reductions by
means of some diverting characteristics in Sun et al. [11]. The paper [12] has a distinctive
view of information theory about reductions and thus generated attribute reduction algo-
rithms. There is a special IS when attribute set is regarded as two parts, namely condition
attribute set and decision attribute set. We call the IS a decision information system(DIS).
Zhang [13] designed an algorithm and counted all reductions under considering the uncer-
tainty of decision rules. In Qian et al. [14], in order to assess odds of decision rule set, three
neoteric ways were recommended to acquire the decision property. In the context of deci-
sion making, Li [15] mined latent knowledge according to suggested knowledge reduction
method. The article [16] studied lower approximation reduction based on dominance relation.
However, as we all know, it is inevitable that information is incomplete result from the loss
and omission of information, data noise and failure of the transmission medium, and so on.
Therefore, a lot of learned men use the incomplete information system as their investigative
setting. On the one hand, Yang [17] adopted complement way to transform missing values
into interval numbers. And then, several relative reductions were shown to obtain optimal
decision rules. On the other hand, other specialists put forward new relations that are different
from the equivalence relation. Some early articles [18–21] primarily introduced the concept
of tolerance relation or similarity relation and its importance properties, and further study
the reduction in RST. The article [22] explored problems about rule extraction with valued
tolerance relation decision. In Liang and Xu [23], Liang explained the reason that the com-
position of attributes causes NP-hard problem and advanced a heuristic algorithm. The paper
[24] defined several intuitionistic fuzzy preference relations, gave decision methods and cor-
responding relationships to solve the realistic problem. In a word, incomplete interval-valued
decision information system is the generalization of classical information system.

Calculating approximation sets is a pivotal point for further computing all kinds of reduc-
tions or rules acquisition, which are vital investigative issues in the RST. However, the
information system we studied usually be covered by new data set since the collected data
set may varies with time every day. Incremental learning is a significant research direction
in machine learning field. It can study new knowledge of new data set and retain knowledge
learned from old data set without accessing old data set. Incremental algorithms can largely
lessen the burden of calculation, while some variation appears. In other words, we utilize
the original approximations and incremental algorithms to acquire updated approximation
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sets for partially modify the original equivalence classes(or tolerance classes) when attribute
set remains unchanged in information system, which is valid for greatly improving the com-
putational efficiency. In here, we consider three influencing factors: the attribute values, the
object set, and the attribute set. They mainly introduce four situations:

• The attribute values of IS change with time, and other factors remain unchanged;
• The object set of IS varies with time, and other factors remain unchanged;
• The attribute set of IS changes, and other factors remain unchanged;
• The object set and attribute set of IS change, and other factors remain unchanged.

Researches on these issues have been studied by many experts in terms of incremental
algorithms with dynamic data in recent years. The first case, the writing [25] constructed a
feature matrix that arises from changes after modifying feature values and put forward incre-
mental algorithms to calculate the second and sixth approximate sets of the set. After the
attribute value in the information system changes with time, the essay [26] raised a method
to update the approximate set. The second case, Yu [27,28] studied updated approximation
sets under different researching contexts and the variation of objects. Based on the analytical
two set-valued information systems, Luo [29] developed a mechanism to update approxima-
tions. Moreover, when many objects vary with time, the literature [30] discussed the means
of updating approximation sets in dominance-based rough sets approach(DRSA). The third
case, similar to the principle of change in the dominance relation, Li [31] studiedmethods and
algorithms to compute approximation sets in DRSA. Jing [32] took advantage of knowledge
granularity for replacing attribute reductions. When new information arrives, the attribute set
may be generalized, the characteristic relationwas studied and the updatingmechanism of the
approximate set was posed by Li [33]. As for the fourth case, in Hu et al. [34], Hu discussed
algorithms about the variety of approximations, while the double universe changes. Combi-
nation of rough set and fuzzy set provided an effective way for replacing approximations in
essay [35]. In summary, these studies help researchers dynamically updating approximations
in different information systems and reducing its computation time.

The purpose of this article is to propose incremental algorithms for computing approxima-
tionswhen objects varywith time, but attribute set remains unchanged in IIDIS, which greatly
reduces the time to compute approximation sets. In order to understand this article better,
this part mainly describes some basic knowledge about the rough set and several definitions
about intervals in Sect. 2. The section defines a new tolerance relation for classifying objects
and establishes a rough set model of IIDIS in Sect. 3. Approaches of statically/dynamically
updating approximations are proposed in Sect. 4. Then, three algorithms are designed in
Sect. 5, namely the static algorithm, the dynamic algorithm when objects increase and the
dynamic algorithm when objects decrease. It exhibits results of the static algorithm and the
two dynamic algorithms about calculating the approximation sets concerning six data sets
from UCI in Sect. 6, respectively. The conclusion of this paper is as shown in Sect. 7.

2 Preliminaries about rough set theory

This section first gives a few fundamental notions about RST in IIDIS for the sake of the
discussion later [9,17].

In many ways, information and knowledge can be reflected in a table that uses object set
as rows and attribute set as columns, which is usually known as an information system. In
general, an information system is denoted as a quadruple I S = (U , A, V , f ). When A =
C ∪ D and C ∩ D �= ∅ hold simultaneously, DT = (U ,C ∪ D, V , f ) is known as a decision
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table. It also can be called a decision information system. Here,U is called universe/discourse
that includes studied objects. Set of characteristics represented by discourse is usually called
attribute set A, which contains two parts: the set of condition attributes C and the set of
decision attributes D. Va is a subset of V that is the domain of attributes. It can be written
as V = ∏

a∈A Va . f : U × A → V is a mapping to transform an ordered pair (x, a) to a
value for each x ∈ U , a ∈ A. And the mapping is called an information function. Specially,
f (x, d)(d ∈ D) is single-valued for every x ∈ U .
In mathematics, any subset R of the product U × U of the universe U can be known as

a binary relation on U . R is usually referred to as an equivalence relation or indiscernibility
relation onU if and only if R satisfies reflexivity, symmetry, and transitivity. Pawlak approx-
imation space can be denoted by a binary group (U , R). Another mathematical object is
the partition on the universe U , which is closely related to the equivalence relation. Specif-
ically, a quotient set is the set of all equivalence classes obtained from the equivalence
relation R. It can be easily verified that the quotient set is a partition on U , written down as
U/R = {[x]R |x ∈ U }, where the equivalence class [x]R = {y ∈ U |x Ry} for x ∈ U .

If for ∀a ∈ A, x ∈ U , attribute value( f (x, a) = [l−, l+]) is an interval of reals between l−
and l+, then I S is an interval-valued information system, referred to as I I S = (U , A, V , f ).
Particularly, if l− = l+, f (x, a) is a real number, so the interval-valued information system
is the generalization of classical information system, where l−, l+ ∈ R, R is the set of real
number.

Let f (x, a) = [l−, l+], if at least one of lower bound l− and upper bound l+ is an
unknown value, thus, we will write down as f (x, a) = *. And I I I S = (U , A, V , f ) is an
incomplete interval-valued information system. IIDIS = (U ,C ∪ D, V , f ) is an incomplete
interval-valued decision information system or incomplete interval-valued decision table. In
the following discussion, we only study the situation, where D = {d}.

The Jaccard coefficient [36] is a probability about comparing similarity and dispersion in
a sample set E , which equals the quotient of the intersection of sample set with the union of
sample set which is denoted by J (M, N ). Assume that (M, N ⊆ E), then

J (E, F) = |M ∩ N |
|M ∪ N | .

The similarity degree of both intervals can be defined based on the above basic concepts
in I I S.

Definition 2.1 Given an interval-valued information system I I S = (U , A, V , f ), for ∀ ak ∈
A, xi , x j ∈ U . Let f (xi , ak) = μ = [μ−, μ+], f (x j , ak) = ν = [ν−, ν+], Then, the
similarity degree with respect to xi , x j under the attribute ak can be referred as

Ski j (μ, ν) = |μ ∩ ν|
|μ ∪ ν| .

In the above equation, | · | represents the length of the closed interval.

Remark 2.1 (1) Both the interval length of the empty set and the single-point set are equal
to zero;

(2) Assume that both attribute values are single-point sets. If μ = ν, then Ski j (μ, ν) = 1;

otherwise, Ski j (μ, ν) = 0;
(3) If μ = * ∨ ν = *, then set the similarity degree with respect to xi , x j equals � (� is

just a mark symbol).
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Definition 2.2 [37] Let two sets Q, G constitute a set pair H = (Q,G). According to
the need of the problem W , we can analyze the characteristics of set pair H and obtain N
characteristics(attributes). For two setsQ,G,which have samevalues onS attributes, different
values on P attributes, and the rest of F = N − S − P attribute values are ambiguous. S

N
is called the identical degree of these two sets under problem W , referred to as the identical
degree. P

N is called the opposite degree of these two sets under problem W , referred to as
the opposite degree. F

N is called the difference degree of these two sets under problem W ,
referred to as the difference degree. Then, the connection degree with respect to two sets Q,
G can be defined as

μ(Q,G) = S

N
+ F

N
· i + P

N
· j .

which is denoted as μ(Q,G) = s + f · i + p · j , where s, f , p ∈ [0, 1], s + f + p = 1.
In the calculation, set j = −1, i ∈ [−1, 1], i and j also participate in the operation as
coefficients. However, the functions of i , j are just markings in this paper. i is the marking
of the difference degree, and j is the marking of the opposite degree.

Given an IIDIS, the similarity degree on two objects can be calculated in the light of
Definition 2.1. There are three possible situations:

(1) The two attribute values are both not equal to *, and their similarity degree is not less
than a given threshold;

(2) The two attribute values are both not equal to *, and their similarity degree is less than
a given threshold;

(3) At least one of the two attribute values is equal to *, and their similarity degree is
considered to be �.

Definition 2.3 [38] Given an incomplete interval-valued information system I I I S =
(U , A, V , f ), B ⊆ A, ∀xi , x j ∈ U . Let S1 = {bk ∈ B|(Ski j (μ, ν) ≥ λ) ∧ ν �= * ∧ μ �= *}
be a set of the attributes that the similarity degree of xi , x j under the attribute bk is not less
than a similar level λ. P1 = {bk ∈ B|Ski j (μ, ν) < λ ∧ ν �= * ∧ μ �= *} is a set of the
attributes that the similarity degree of xi , x j under the attribute bk is less than a similar level
λ. F1 = {bk ∈ B|Ski j (μ, ν) = �} is a set of the attributes that the similarity degree of xi , x j
under the attribute bk is equal to �.

Furthermore, |S1||B| denotes the tolerance degree of the two objects with regard to B. |P1||B|
denotes the opposite degree of the two objects with regard to B. |F1||B| denotes the difference
degree of the two objects with regard to B. Then, the relationship of xi , x j is known as

μ1(xi , x j ) = |S1|
|B| + |F1|

|B| · i + |P1|
|B| · j .

μ1 indicates similar connection degree of the two objects xi , x j . Referred to as
μ1(xi , x j ) = s1 + f1 · i + p1 · j . Where s1, f1, p1 ∈ [0, 1], s1 + f1 + p1 = 1, the
functions of i , j are just markings. i is the marking of the difference degree, and j is the
marking of the opposite degree.

3 Rough set in IIDIS

In this section, a novel tolerance relation is defined in light of similar connection degree and
constructed rough set model.
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Definition 3.1 In the incomplete interval-valued decision information system IIDIS =
(U ,C ∪ {d}, V , f ), ∀B ⊆ C , for each xi , x j ∈ U . α ∈ (0.5, 1], β, γ ∈ [0, 0.5). The
multi-threshold tolerance relation can be referred as

Rαβγ

B = {(xi , xi )} ∪ {(xi , x j )|μ1(xi , x j ) = s1 + f1 · i + p1 · j,
s1 ≥ α, f1 ≤ γ, p1 ≤ β, s1 + f1 + p1 = 1}.

s1, f1, p1 represent, respectively, the tolerance degree, the difference degree, and the
opposite degree of objects xi , x j with reference to attribute set B. α is the threshold of the
tolerance degree, β is the threshold of the opposite degree, and γ is the threshold of the
difference degree.

The multi-threshold tolerance class can be defined as

[xi ]Rαβγ
B

= {x j ∈ U |(xi , x j ) ∈ Rαβγ

B }.
U/Rαβγ

B = {[x1]Rαβγ
B

, [x2]Rαβγ
B

, . . . , [x|U |]Rαβγ
B

}.
In addition, a binary relation under decision attribute d is remembered as Rd = {(xi , x j ) ∈

U 2| fd(xi ) = fd(x j )}. Decision class and quotient set can be alluded to as [x]d = {y ∈
U | fd(x) = fd(y)},U/d = {[x]d |∀x ∈ U } = {D1, D2, . . . , Dq}(Di ⊆ U , i = 1, 2, . . . , q),
respectively. It can easily be proven that relation Rd is an equivalence relation and U/d
constitutes a partition on U .

Remark 3.1 (1) It obviously observes that the multi-threshold tolerance relation is reflexive
and symmetrical rather than transitive, which is a tolerance relation; J = ∪{[xi ]Rαβγ

B
}

is a cover on U .
(2) It is reasonable to put two objects in the same class if the tolerance degree of the

two objects under the attribute subset is not less than α and the opposite degree, the
difference degree of the two objects under the attribute subset is less than or equal to β,
γ , respectively.

(3) If we do not consider parameter γ and the range of α, β, the multi-threshold tolerance
relation is degraded into the tolerance relation inZeng et al. [38]. Therefore, the tolerance
relation in Zeng et al. [38] can be regarded as a specific situation of multi-threshold
tolerance relation.

(4) When B = {a}, {a} can be replaced by a. The following paper will denote Rαβγ
a ,

[xi ]Rαβγ
a

, U/Rαβγ
a .

Every uncertain concept can be represented by a couple of accurate notions that are
upper approximation and lower approximation(for short approximations). The following
gives definitions about upper/lower approximation.

Definition 3.2 In the incomplete interval-valued decision information system IIDIS =
(U ,C ∪ {d}, V , f ), for each B ⊆ C , X ⊆ U . The approximations of X concerning a
multi-threshold tolerance relation Rαβγ

B can be represented by

Rαβγ

B (X) = {x ∈ U |[x]
Rαβγ
B

⊆ X};

Rαβγ

B (X) = {x ∈ U |[x]
Rαβγ
B

∩ X �= ∅}.

Rαβγ

B , Rαβγ

B are called lower and upper approximation operators of X concerning a multi-

threshold tolerance relation Rαβγ

B .
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Moreover, similar to classical rough set, positive region is recorded as Pos
Rαβγ
B

(X) =
Rαβγ

B (X); negative region is known as Neg
Rαβγ
B

(X) = U − Rαβγ

B (X),what boundary region

represents the difference between the lower approximation and upper approximation of X

concerning Rαβγ

B is denoted by Bn
Rαβγ
B

(X) = Rαβγ

B (X) − Rαβγ

B (X).

Example 1 Just as revealed in Table 1 (processing method is similar with Sect. 6), it is an
incomplete interval-valued decision information system. It represents situation of treating
wart of 20 people. Here, IIDIS = (U ,C∪{d}, V , f ).Where universeU = {x1, x2, . . . , x20},
xi represent the i th people (i = 1, 2, . . . , 20). A = {a1, a2, . . . , a7}, ai (i = 1, 2, . . . , 7)
represent sex, age, time, number of warts, type, area, induration diameter, respectively. d
shows the result of treatment. f (x, d) ∈ {0, 1}. In this example, let λ = 0.5, α = 0.6, β =
0.4, γ = 0.2.

It is easy to know decision attribute divides discourse into two parts, U/d = {D1, D2},
where D1 ∪ D2 = U , D1 ∩ D2 = ∅. Assume that D1 = {x5, x10, x13, x14, x15}, then
D2 = U − D1. Let B1 ⊆ C , B1 = {a7}. It can be obtained by calculation:

[x1]Rαβγ
B1

= [x4]Rαβγ
B1

= [x13]Rαβγ
B1

= {x1, x4, x13};
[x2]Rαβγ

B1

= [x5]Rαβγ
B1

= [x9]Rαβγ
B1

= [x10]Rαβγ
B1

= [x11]Rαβγ
B1

= {x2, x5, x9, x10, x11};
[x3]Rαβγ

B1

= [x19]Rαβγ
B1

= {x3, x19}; [x6]Rαβγ
B1

= {x6}; [x7]Rαβγ
B1

= {x7};
[x8]Rαβγ

B1

= {x8}; [x12]Rαβγ
B1

= {x12}; [x14]Rαβγ
B1

= {x14}; [x15]Rαβγ
B1

= {x15};
[x16]Rαβγ

B1

= {x16}; [x17]Rαβγ
B1

= {x17}; [x18]Rαβγ
B1

= {x18}; [x20]Rαβγ
B1

= {x20};
Hence, according to definitions of approximations:

Rαβγ

B1
(D1) = {x14, x15},

Rαβγ

B1
(D1) = {x1, x2, x4, x5, x9, x10, x11, x13, x14, x15},

So the positive region is Pos
Rαβγ
B1

(D1) = {x14, x15},
negative region is Neg

Rαβγ
B1

(D1) = {x3, x6, x7, x8, x12, x16, x17, x18, x19, x20},
and boundary region is Bn

Rαβγ
B1

(D1) = {x1, x2, x4, x5, x9, x10, x11, x13}.

4 Method for obtaining approximations with dynamic data in IIDIS

As society modernizes and progresses, people have entered the era of information. Data
analysis and data mining are hot topics in the research of rough set. We can know some
knowledge according to the raw data. However, the object set discussed by these data may
increases or decreases for some reasons over time. Incremental machine learning is a vital
method to deal with dynamic data in data mining. This section will focus on how to solve
variation of approximations when some objects add to or delete from the initial data, but
attribute set remains unchanged in IIDIS. In the following discussion, we only consider an
object that adds to or deletes from the initial data and obtain new data in order to facilitate
the calculation. As for increasing or decreasing multiple objects, we only need to repeat
the updating principle of individual object step by step. In short, we need to observe two
incomplete interval-valued decision information systems as our researching objects. One is
the initial system IIDIS = {U ,C ∪ {d}, V , f }, and the other is the testing system IIDIS′ =
{U ′,C ∪ {d}, V ′, f }.
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4.1 Method for obtaining approximations with deleting an object in IIDIS

Now, we can acquire an initial system IIDIS = {U ,C ∪ {d}, V , f } by disposing raw data.
Testing system IIDIS′ = {U ′,C ∪{d}, V ′, f } can be obtained by deleting an object from the
discourse U , and both the multi-threshold tolerance classes [x]

Rαβγ
B

(for any x ∈ U , B ⊆ C)

and decision classes Dj ( j = 1, 2, . . . , q)will change at the same time,whereU ′ = U−{x0}.
We explore the method for solving approximation problem and discuss whether the deleted
object x0 belongs to Dj .

1. The first case: if the deleted object x0 ∈ Dj , then D′
j = Dj − {x0}.

Proposition 4.1 Given an incomplete interval-valued decision information system IIDIS =
(U ,C ∪ {d}, V , f ), for each B ⊆ C. If x0 ∈ Dj ( j ∈ {1, 2, . . . , q}), then the variation of
approximations of D j can be updated as:

(1) If x0 ∈ Rαβγ

B (Dj ), then R
αβγ

B (D′
j ) = Rαβγ

B (Dj )−{x0}. If not, Rαβγ

B (D′
j ) = Rαβγ

B (Dj ).

(2) Rαβγ

B (D′
j ) = (Rαβγ

B (Dj ) − [x0]Rαβγ
B

) ∪ �, where � = {x |[x]
Rαβγ
B

∩ D′
j �= ∅, x ∈

([x0]Rαβγ
B

− {x0})}.

Proof (1) If x0 ∈ Dj , there have U ′ = U − {x0}, D′
j = Dj − {x0}. For ∀x ∈ U ′, [x]′

Rαβγ
B

=
[x]

Rαβγ
B

−{x0}. On account of x0 ∈ Dj , when [x]
Rαβγ
B

⊆ Dj , [x]′
Rαβγ
B

⊆ D′
j holds. Likewise,

when [x]
Rαβγ
B

� Dj , [x]′
Rαβγ
B

� D′
j holds. In the light of Definition 3.2, apparently, for each

x ∈ U ′, if x ∈ Rαβγ

B (Dj ), then x ∈ Rαβγ

B (D′
j ), and if x /∈ Rαβγ

B (Dj ), then x /∈ Rαβγ

B (Dj )
′.

Therefore, if x0 ∈ Rαβγ

B (Dj ), then Rαβγ

B (D′
j ) = Rαβγ

B (Dj )−{x0}. Otherwise, Rαβγ

B (D′
j ) =

Rαβγ

B (Dj ).

(2) In the light of Definition 3.2, the upper approximation of Dj is Rαβγ

B (Dj ) = {x ∈
U |[x]

Rαβγ
B

∩ Dj �= ∅}. The set [x0]Rαβγ
B

should be deleted from Rαβγ

B (Dj ), while [x0]Rαβγ
B

∩
Dj = [x0]Rαβγ

B
. But if there exits an object x ∈ [x0]Rαβγ

B
− {x0}, s.t. [x]

Rαβγ
B

∩ D′
j �= ∅.

These objects like x should not be deleted. So Rαβγ

B (D′
j ) = Rαβγ

B (Dj ) ∪ �. Where � =
{x |[x]

Rαβγ
B

∩ D′
j �= ∅, x ∈ ([x0]Rαβγ

B
− {x0})}. ��

2. The second case: if the deleted object x0 /∈ Dj , then D′
j = Dj .

Proposition 4.2 Given an incomplete interval-valued decision information system IIDIS =
(U ,C ∪ {d}, V , f ), for each B ⊆ C. If x0 /∈ Dj ( j ∈ {1, 2, . . . , q}), then the variation of
approximations of D j can be updated as:

(1) Rαβγ

B (D′
j ) = Rαβγ

B (Dj ) ∪ �, where � = {x |([x]
Rαβγ
B

− {x0}) ⊆ Dj , x ∈ (Dj −
Rαβγ

B (Dj ))}.
(2) If x0 ∈ Rαβγ

B (Dj ), then R
αβγ

B (D′
j ) = Rαβγ

B (Dj )−{x0}. If not, Rαβγ

B (D′
j ) = Rαβγ

B (Dj ).

Proof (1) If x0 /∈ Dj , there haveU ′ = U−{x0}, D′
j = Dj . For∀x ∈ U ′, [x]′

Rαβγ
B

= [x]
Rαβγ
B

−
{x0}. Supposing that [x]

Rαβγ
B

⊆ Dj , hence [x]′
Rαβγ
B

⊆ D′
j . According to Definition 3.2, for
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∀x ∈ Dj , if x ∈ Rαβγ

B (Dj ), then [x]′
Rαβγ
B

⊆ [x]
Rαβγ
B

⊆ Dj = D′
j , namely [x]′

Rαβγ
B

⊆ D′
j , so

we can gain Rαβγ

B (Dj ) ⊆ Rαβγ

B (D′
j ).

Assume that Rαβγ

B (D′
j ) = Rαβγ

B (Dj )∪�. For∀x ∈ Dj−Rαβγ

B (Dj ), there have [x]
Rαβγ
B

�

Dj but may exist x0 ∈ [x]
Rαβγ
B

, s.t. ([x]
Rαβγ
B

− {x0}) ⊆ Dj . These objects like x cannot be

deleted. Therefore, Rαβγ

B (D′
j ) = Rαβγ

B (Dj )∪�, where� = {x |([x]
Rαβγ
B

−{x0}) ⊆ Dj , x ∈
(Dj − Rαβγ

B (Dj ))}.
(2) On the one hand, if x0 ∈ Rαβγ

B (Dj ), while x0 /∈ Dj , according to Definition 3.2, there
exists at least an object x ∈ Dj , s.t. x0 ∈ [x]

Rαβγ
B

. After deleting x0, [x]′
Rαβγ
B

= [x]
Rαβγ
B

−{x0}
and [x]′

Rαβγ
B

∩ Dj �= ∅ hold. Thus, Rαβγ

B (D′
j ) = Rαβγ

B (Dj ) − {x0}. On the other hand, if

x0 /∈ Rαβγ

B (Dj ), then for ∀x ∈ Dj , x0 /∈ [x]
Rαβγ
B

. So Rαβγ

B (D′
j ) = Rαβγ

B (Dj ). ��

4.2 Method for obtaining approximations with adding an object in IIDIS

We can obtain initial system IIDIS = {U ,C ∪{d}, V , f } after dealing with raw data. Testing
system IIDIS′ = {U ′,C ∪ {d}, V ′, f } can be acquired by adding an object to the universe
U , and both the multi-threshold tolerance classes [x]

Rαβγ
B

(for any x ∈ U , B ⊆ C) and deci-

sion classes Dj ( j = 1, 2, . . . , q) evolve over time, where U ′ = U ∪ {x0} and the added
object is x0. There appear three cases with regard to the upper and lower approximation
of Dj :

• An object x0 is added to the universeU , and there exists x ∈ Dj , s.t. f (x, d) = f (x0, d)

holds, thus D′
j = Dj ∪ {x0}.

• An object x0 is added to the universe U . There exists x ∈ (U − Dj ), s.t. f (x, d) =
f (x0, d) holds. Besides, for each x ∈ Dj , f (x, d) �= f (x0, d) holds; thus, D′

j = Dj .
• An object x0 is added to the universe U and for ∀x ∈ U , f (x, d) �= f (x0, d) holds, and

thus, there engenders a novel decision class Dq+1 = {x0}.
1. The first case: D′

j = Dj ∪ {x0}.

Proposition 4.3 Given an incomplete interval-valued decision information system IIDIS =
(U ,C ∪ {d}, V , f ), for each B ⊆ C. If an object x0 is added to the universe U, there exists
x ∈ Dj ( j = 1, 2, . . . , q), such that f (x, d) = f (x0, d) holds, and thus, the variation of
approximations of D j can be updated as:

(1) If [x0]Rαβγ
B

⊆ D′
j , then Rαβγ

B (D′
j ) = Rαβγ

B (Dj )∪{x0}. If not, Rαβγ

B (D′
j ) = Rαβγ

B (Dj ).

(2) Rαβγ

B (D′
j ) = Rαβγ

B (Dj ) ∪ [x0]Rαβγ
B

.

Proof (1) When an object x0 adds to the universe U , the universe will be turned into U ′ =
U ∪ {x0}. For ∀x ∈ Dj , if [x]

Rαβγ
B

⊆ Dj , then x ∈ Rαβγ

B (Dj ). Hence, if for x ∈ Dj ,

x0 ∈ [x]
Rαβγ
B

holds, then [x]′
Rαβγ
B

= [x]
Rαβγ
B

∪ {x0}. Namely, if [x]
Rαβγ
B

⊆ Dj , it can obtain

[x]′
Rαβγ
B

⊆ D′
j . Similarly, if [x]

Rαβγ
B

� Dj , it can obtain [x]′
Rαβγ
B

� D′
j . Therefore, if

x ∈ Rαβγ

B (Dj ), then x ∈ Rαβγ

B (D′
j ) holds. If x /∈ Rαβγ

B (Dj ), then x /∈ Rαβγ

B (D′
j ) holds. We

123



Dynamically updating approximations based on multi-threshold… 1073

can assume that Rαβγ

B (D′
j ) = Rαβγ

B (Dj ) ∪ �. If [x0]Rαβγ
B

⊆ D′
j , then x0 ∈ Rαβγ

B (D′
j ). So

� = {x0}, Rαβγ

B (D′
j ) = Rαβγ

B (Dj ) ∪ {x0}. Otherwise, Rαβγ

B (D′
j ) = Rαβγ

B (Dj ).

(2) In the light of Definition 3.2, the upper approximation of Dj is Rαβγ

B (Dj ) = {x ∈
U |[x]

Rαβγ
B

∩ Dj �= ∅}. For each x ∈ U , [x]′
Rαβγ
B

= [x]
Rαβγ
B

∪{x0} or [x]′
Rαβγ
B

= [x]
Rαβγ
B

hold.

Suppose that Rαβγ

B (D′
j ) = Rαβγ

B (Dj ) ∪ �, because [x0]Rαβγ
B

∩ D′
j �= ∅ must be established

and Rαβγ

B satisfies the quality of symmetry. Then, Rαβγ

B (D′
j ) = Rαβγ

B (Dj ) ∪ [x0]Rαβγ
B

. ��

2. The second case: D′
j = Dj .

Proposition 4.4 Given an incomplete interval-valued decision information system IIDIS =
(U ,C ∪ {d}, V , f ), for each B ⊆ C. There exists x ∈ (U − Dj ), s.t. f (x, d) = f (x0, d)

holds and for each x ∈ Dj , f (x, d) �= f (x0, d) also holds, and thus, the variation of
approximations of D j can be updated as:

(1) Rαβγ

B (D′
j ) = Rαβγ

B (Dj ) − �, where � = {x |x ∈ Rαβγ

B (Dj ), x0 ∈ [x]′
Rαβγ
B

}.
(2) If there exists x ∈ Dj , s.t. x0 ∈ [x]′

Rαβγ
B

holds, thus Rαβγ

B (D′
j ) = Rαβγ

B (Dj ) ∪ {x0}. If
not, Rαβγ

B (D′
j ) = Rαβγ

B (Dj ).

Proof (1) When an object x0 adds to the universe U , the universe will be turned into U ′ =
U ∪ {x0}. For each x ∈ D′

j , there have [x]′
Rαβγ
B

= [x]
Rαβγ
B

or [x]′
Rαβγ
B

= [x]
Rαβγ
B

∪ {x0}. If
[x]

Rαβγ
B

� Dj , then [x]′
Rαβγ
B

� D′
j . That is, x ∈ Rαβγ

B (D′
j ), then x ∈ Rαβγ

B (Dj ). Hence, we

can assume that Rαβγ

B (D′
j ) = Rαβγ

B (Dj ) − � and only consider x ∈ Rαβγ

B (Dj ). When an

object x0 adds in the universeU , there may be ∃x ∈ Rαβγ

B (Dj ) and [x]′
Rαβγ
B

= [x]
Rαβγ
B

∪{x0},
thus [x]′

Rαβγ
B

� Dj , namely x /∈ Rαβγ

B (D′
j ). Therefore, R

αβγ

B (Dj )
′ = Rαβγ

B (Dj )−�, where

� = {x |x ∈ Rαβγ

B (Dj ), x0 ∈ [x]′
Rαβγ
B

}.
(2) If ∃x ∈ Dj , s.t .x0 ∈ [x]′

Rαβγ
B

(that is, [x]′
Rαβγ
B

= [x]
Rαβγ
B

∪ {x0}), then x0 ∈ Rαβγ

B (D′
j ),

namely Rαβγ

B (D′
j ) = Rαβγ

B (Dj ) ∪ {x0}. Otherwise, if for ∀x ∈ Dj , x0 /∈ [x]′
Rαβγ
B

holds.

Then, [x]′
Rαβγ
B

= [x]
Rαβγ
B

. So Rαβγ

B (D′
j ) = Rαβγ

B (Dj ). ��

3. The third case: An object x0 is added to the universeU and for each x ∈ U , f (x, d) �=
f (x0, d) holds, and thus, there engenders a novel decision class Dq+1 = {x0}.
Proposition 4.5 Given an incomplete interval-valued decision information system IIDIS =
(U ,C ∪ {d}, V , f ), for each B ⊆ C. Then, the approximations of Dq+1 can be represented
by:

(1) If [x0]Rαβγ
B

= {x0}, then Rαβγ

B (Dq+1) = {x0}. If not, Rαβγ

B (Dq+1) = ∅.
(2) Rαβγ

B (Dq+1) = [x0]Rαβγ
B

.

123



1074 B. Lin et al

Proof (1) Dq+1 is a novel decision class. For each x ∈ U , f (x, d) �= f (x0, d) holds, so

Dq+1 = {x0}. If [x0]Rαβγ
B

= {x0}, then Rαβγ

B (Dq+1) = {x0}. Otherwise, Rαβγ

B (Dq+1) = ∅.
(2) The multi-threshold tolerance relation is symmetrical in the light of Remark 3.1;

then, x ∈ [x0]Rαβγ
B

be equivalent to x0 ∈ [x]
Rαβγ
B

. Because Dq+1 = {x0}, thus,

Rαβγ

B (Dq+1)={x |[x]
Rαβγ
B

∩ Dq+1 �= ∅}={x |[x]
Rαβγ
B

∩ {x0} �= ∅}=[x0]Rαβγ
B

. ��

5 A static algorithm and two dynamic algorithms for obtaining
approximations in IIDIS with changed objects

If the universe changes, the approximations of an uncertainty notion also vary. One way
is to find approximation sets step by step based on Definition 3.2 after changing objects.
Anothermethod is to update approximation sets according to the prior knowledge and original
approximation sets when the universe varies. In this section, we firstly display the static
algorithm for computing approximations according toDefinition 3.2 in IIDIS. Then, dynamic
algorithms for computing approximations are presented in IIDIS when the universe changes
based on above-mentioned five Propositions. The following will explain these algorithms in
detail.

5.1 The static algorithm for obtaining approximations in IIDIS

In there, we devise an algorithm according to definition of approximations for obtaining
approximations after changing objects in IIDIS, which is called static algorithm(that is,
Algorithm 1). Firstly, we introduce a testing system IIDIS = (U ,C ∪ {d}, V , f ) after
changing object set. In steps 2–5, we compute decision classes Dj ( j = 1, 2, . . . , q} and
multi-threshold tolerance classes [x]

Rαβγ
B

for every x ∈ U . Steps 6–8 initialize lower and

upper approximations to empty set. Next, in steps 10–17, the approximations of decision
class Dj directly be calculated in line with Definition 3.2. The time complexity of Algo-
rithm 1 can be seen in Table 2, which describes the time complexity of the best case (The
Best Complexity) and the worst case (The Worst Complexity).

5.2 The dynamic algorithm about variation of approximations in IIDIS while
removing an object

We design a dynamic algorithm in the light of Proposition 4.1 and 4.2 for gaining approxi-
mations after removing an object from the universe U in IIDIS, which is Algorithm 2. We
introduce an initial system IIDIS = (U ,C ∪ {d}, V , f ), the initial multi-threshold tolerance
classes [x]

Rαβγ
B

for every x ∈ U , initial quotient setU/d = {D1, D2, . . . , Dq}, and the initial
approximations of Dj : R

αβγ

B (Dj ), R
αβγ

B (Dj )(i = 1, 2, . . . , q). After selecting a removal
object x0, the whole Algorithm 2 mainly includes two parts. On the one hand, in steps 4–14,
Algorithm 2 introduces procedures with regard to updating lower and upper approximations
of decision class Dj when the removal object x0 belongs to Dj , where steps 4–8 count the
updated lower approximation and steps 9–14 compute the updated upper approximation by
Proposition 4.1. On the other hand, in steps 16–29, Algorithm 2 describes processes con-
cerning updated approximations of decision class Dj , while the removal object x0 does not
belong to Dj , where steps 16–24 calculate the updated lower approximation and steps 25–29
compute the updated upper approximation by Proposition 4.2. In order to directly understand
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Algorithm 1: The static algorithm for obtaining approximations in IIDIS
Input : a testing system IIDIS = (U ,C ∪ {d}, V , f ), where B ⊆ C .
Output : the approximations of decision class Dj in IIDIS.

1 begin
2 compute U/d = {D1, D2, . . . , Dq }; /* compute decision classes Dj */
3 for x ∈ U do
4 compute [x]

R
αβγ
B

;

5 end
6 for j=1:q do

7 let Rαβγ
B (Dj ) = ∅;Rαβγ

B (Dj ) = ∅; /* the initialization of lower and

upper approximations */
8 end
9 for j=1:q do

10 for x ∈ U do
11 if [x]

Rαβγ
B

⊆ Dj then

12 Rαβγ
B (Dj ) = Rαβγ

B (Dj ) ∪ {x};
13 end
14 if x ∈ Dj then

15 Rαβγ
B (Dj ) = Rαβγ

B (Dj ) ∪ [x]
Rαβγ
B

; /* calculate the lower/upper

approximation of Dj by Definition 3.2 */
16 end
17 end
18 end

return : Rαβγ
B (Dj ), R

αβγ
B (Dj ).

19 end

Table 2 The time complexity of
Algorithm 1

Lines The best complexity The worst complexity

2 �(|U |) �(|U |)
3−5 �(|B||U |2) �(|B||U |2)
6−8 �(q) �(q)

9−18 �(q|U |) �(|U |2)
Total �(|B||U |2) �(|B||U |2)

this algorithm, the flowchart of Algorithm 2 is displayed in Fig. 1. The time complexity of
Algorithm 2 is shown in Table 3 that introduces the time complexity of the best case (The
Best Complexity) and the worst case (The Worst Complexity).

5.3 The dynamic algorithm about variation of approximations in IIDIS while adding
an object

Weplan a dynamic algorithm in the light of Proposition 4.3–4.5 for acquiring approximations
after adding an object to the universe U in IIDIS, which is Algorithm 3. We input an initial
system IIDIS = (U ,C ∪ {d}, V , f ), the initial multi-threshold tolerance classes [x]

Rαβγ
B

for

every x ∈ U , initial quotient setU/d = {D1, D2, . . . , Dq}, and the initial approximations of

Dj : R
αβγ

B (Dj ), R
αβγ

B (Dj )(i = 1, 2, . . . , q). After selecting an inserted object x0, the whole
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Algorithm 2: The dynamic algorithm to compute approximations after deleting an object in IIDIS

Input : (1)the initial system IIDIS = (U ,C ∪ {d}, V , f ), where B ⊆ C .
(2)the initial multi-threshold tolerance classes [x]

R
αβγ
B

(∀x ∈ U ) and

initial quotient set U/d = {D1, D2, . . . , Dq }.
(3)the initial lower and upper approximations of Dj : R

αβγ
B (Dj ),

Rαβγ
B (Dj )( j = 1, 2, . . . , q).

(4)the deleted object: x0.

Output : the approximations of decision class Dj after deleting x0: R
αβγ
B (D′

j ),

Rαβγ
B (D′

j ).

1 begin
2 for j=1:q do
3 if x0 ∈ Dj then

4 if x0 ∈ Rαβγ
B (Dj ) then

5 Rαβγ
B (D′

j ) = Rαβγ
B (Dj ) − {x0};

6 else

7 Rαβγ
B (D′

j ) = Rαβγ
B (Dj );

8 end

9 Rαβγ
B (D′

j ) = Rαβγ
B (Dj ) − [x0]Rαβγ

B
;

10 for x ∈ ([x0]Rαβγ
B

− {x0}) do
11 if [x]

R
αβγ
B

∩ (Dj − {x0}) �= ∅ then

12 Rαβγ
B (D′

j ) = Rαβγ
B (D′

j ) ∪ {x}; /* compute the updated

lower/upper approximation of Dj by Proposition 4.1 */
13 end
14 end
15 else

16 let Rαβγ
B (D′

j ) = Rαβγ
B (Dj );

17 for x ∈ (Dj − Rαβγ
B (Dj )) do

18 if x0 ∈ [x]
Rαβγ
B

then

19 [x]
R

αβγ
B

= [x]
R

αβγ
B

− {x0};
20 end
21 if [x]

Rαβγ
B

⊆ Dj then

22 Rαβγ
B (D′

j ) = Rαβγ
B (D′

j ) ∪ {x};
23 end
24 end

25 if x0 ∈ Rαβγ
B (Dj ) then

26 Rαβγ
B (D′

j ) = Rαβγ
B (Dj ) − {x0};

27 else

28 Rαβγ
B (D′

j ) = Rαβγ
B (Dj ); /* compute the updated lower/upper

approximation of Dj by Proposition 4.2 */
29 end
30 end
31 end

return : Rαβγ
B (D′

j ),R
αβγ
B (D′

j ).

32 end
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Fig. 1 The flowchart of Algorithm 2

Table 3 The time complexity of
Algorithm 2

Lines The best complexity The worst complexity

4−8 �(1) �(1)

10−14 �(1) �(|U ||Dj |)
17−24 �(1) �(|Dj |2)
25−29 �(1) �(1)

Total �(q) �(|U |2)

Algorithm 3 totally occurs three parts. Firstly, in step 2, we calculate the multi-threshold
tolerance class the of inserted object x0. The steps 4–11 of Algorithm 3 introduce procedures
with regard to updated approximations of decision class Dj , while the inserted object x0 is
one element of Dj , where steps 5–10 compute the updated lower approximation and step
11 computes the updated upper approximation by Proposition 4.3. Secondly, in steps 12–
24, Algorithm 3 describes processes concerning updated lower and upper approximation of
decision class Dj , while the inserted object x0 is not the element of Dj and its decision
value is equal to decision value of an object, which is one of (U − Dj ) objects, where steps
12–19 calculate the updated lower approximation and steps 19–24 compute the updated
upper approximation by Proposition 4.4. Thirdly, in steps 26–32, Algorithm 3 investigates
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processes concerning updated approximations of decision class Dj , while decision value
of the inserted object x0 does not equal to any decision values of the universe U , where
steps 27–31 count the updated lower approximation and step 32 computes the updated upper
approximation by Proposition 4.5. Analogously, the flowchart of Algorithm 3 is shown in
Fig. 2. Table 4 reveals the time complexity of Algorithm 3 under the best case (The Best
Complexity) and the worst case (The Worst Complexity).
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Fig. 2 The flowchart of Algorithm 3

Table 4 The time complexity of
Algorithm 3

Lines The best complexity The worst complexity

2 �(|B||U |) �(|B||U |)
5−11 �(1) �(|D′

j |)
13−24 �(1) �(|Dj |)
26−31 �(1) �(1)

Total �(|B||U |) �(|B||U |)

5.4 Scalability analysis

Both the static and dynamic algorithms have good scalability. They can be easily extended
to any other types of binary relations, such as similarity relation, interval-valued dominance
relation [12,16], and so on. In other words, we provide a general algorithm framework on
such binary relations. However, our static algorithm cannot be used for incremental learning.
If we need to change objects of original data set, the static algorithm must restart. Obviously,
the computational complexity is much higher when massive objects add to or delete from the
initial data, but attribute set remains unchanged in IIDIS. In contrast, the dynamic algorithms
are very flexible to undertake the above case. Because there is no necessary to reorganize
the original data set. The idea of incremental learning is fully absorbed into the dynamic
version. In real applications, the static algorithm is first used to generate the lower and upper
approximations. Then, the dynamic algorithms are merged in incremental process, which are
very effective.

6 Experimental analysis

Compared with the static algorithm, several experiments are proposed for verifying the effi-
ciency and performance of the dynamic algorithms in the light of six data sets from UCI
database in this section, namely “User Knowledge Modeling,” “Blood Transfusion Service
Center,” “Wine Quality—Red,” “Letter Recognition (randomly selecting 3400 objects),”
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Table 5 The testing data sets

Data sets Abbreviation Object Attribute Decision class

UserKnowledgeModeling UKM 403 6 4

BloodTransfusionServiceCenter BTSC 748 5 2

WineQuality-Red WQR 1599 12 6

LetterRecognition LR 3400 16 26

WineQuality-White WQW 4898 12 7

Pen-BasedRecognitionofHandwrittenDigits PBRHD 10,992 17 10

“Wine Quality—White,” and “Pen-Based Recognition of Handwritten Digits,” which are
outlined in Table 5. The testing results are running on personal computer with processor (2.7
GHz Intel Core i5) and memory (8 GB 1867 MHz DDR3). The platform of algorithms is
MATLAB 2016B.

In fact, the attribute values of six data sets are real numbers. But, what we are investigating
is IIDIS. So we need utilizing multiply error precision ξ and missing rate π (π ∈ (0, 1))
to process the data and change the data from real numbers to interval numbers. Let DI S =
(U ,C ∪ {d}, V , f ) be a decision information system. All attribute values are single-valued.
For any xi ∈ U , a j ∈ C , the attribute value of xi under the attribute a j can be written as
t = f (xi , a j ). Firstly, we randomly choose �π × |U | × |C |�(�·� is the meaning of taking
an integer down) attribute values and turn them into missing values in order to construct an
incomplete information system. These missing values are written as *. In this experiment,
we let π = 0.3, ξ = 0.05, λ = 0.5, α = 0.6, β = 0.2, γ = 0.4. But, the attribute value of
xi under the decision attribute d remains unchanged. Secondly, the interval number can be
obtained by formula t ′ = [(1 − ξ) × t, (1 + ξ) × t]. In the process of whole experiments,
we only study objects vary with time, but attribute set remains unchanged. In summary, an
IIDIS is gained by this way.

To observe evidently gap of computation time between the static algorithm and the
dynamic algorithms, we first let a data set constitutes initial system IIDIS and another data
set(after adding objects to the universe or deleting objects from the universe) is viewed as
testing system IIDIS′. The detailed description about variation of universe is as follows.

• Weset the universe of IIDIS as initial object setU . Randomly selecting �Rr×|U |� objects
are viewed as testing object set U ′ in every experiment, where the removal ratio(Rr) is
from 0.1 to 0.9.

• We let a half objects of the universe in IIDIS as initial object set U . A testing object set
U ′ is formed by adding �I r ×|U |� objects to the initial object setU in every experiment,
where the inserted ratio(Ir) is from 0.1 to 0.9.

In order to avoid the contingency of the experiment and reduce errors, we select a decision
class and run five times for each test and then take the average of the five results as the final
result. The results(the unit is second) are shown in Table 6 about time of computing lower
and upper approximations of both Algorithm 1 and Algorithm 2, and the curve graph for
every data set is portrayed in Fig. 3. Where the x-coordinate and y-coordinate represent the
removal ratio, computation time of calculating lower and upper approximations, respectively.

In each sub-figure (1–6) of Fig. 3, we can observe its line trend in totally. The computation
time of static algorithm is reducing largelywith the increasement of the removal ratio. And the
computation time of dynamic algorithm is decreasing smoothly along with the increasement
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Fig. 3 Comparison of running time of both Algorithms 1 and 2

of the removal ratio in principle. When the removal ratio reaches a certain value, the static
algorithm has the same time with the dynamic algorithm in calculating approximations. In
addition, it is obviously known that dynamic algorithm performs faster than static algorithm.

Similarly, the results(the unit is second) are exhibited in Table 7 about time of computing
lower and upper approximations of both Algorithm 1 andAlgorithm 3 and the curve graph for
every data set is depicted in Fig. 4. The x-coordinate and y-coordinate indicate the inserted
ratio, computation time of calculating lower and upper approximations, respectively.

In each sub-figure (1–6) of Fig. 4, we can observe its line trend in totally. The computation
time of the static algorithm and dynamic algorithm is both increasing monotonically with
the increasement of the inserted ratio. The curve graph of two algorithms has similar growth
rates. But, it is distinctly shown that dynamic algorithm performs faster than static algorithm.
Therefore, the dynamic algorithms are faster and more efficient than the static algorithm
concerning time of calculating approximation sets in IIDIS whether objects are deleted from
the universe or objects are inserted into the universe.

7 Conclusion

Information system may change with the variation of obtained data in real life. Approxi-
mate sets will also evolve over time simultaneously. How to reduce the time to calculate
the approximate sets is an important content of discovering knowledge in RST. In this arti-
cle, we establish a multi-threshold tolerance relation through set pair analysis theory and
construct rough set model in the IIDIS that is a promotion of Pawlak information system.
Then, the static algorithm is proposed by definition of approximations, which can directly
acquire approximation sets step by step. The dynamic algorithms are presented to compute
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Fig. 4 Comparison of running time of both Algorithms 1 and 3

the upper and lower approximation according to the previous data and knowledge and several
propositions, which are exhibited when objects vary, but the attribute set remains unchanged.
Finally, the experimental results make clear that the presented dynamic algorithms have less
time than the static algorithm when calculating the approximate sets. In addition, this article
only discusses the variation of objects.

Later, wewill consider that a multi-threshold tolerance relation can be viewed as one gran-
ularity and further explore approaches to deal with the issue about updating approximations
for multi-granulation rough set in IIDIS.
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